Isomorphism of pointed minimal systems is not classifible by countable structures

Bo Peng (Joint work with Ruiwen Li)

February 27, 2024

#### Borel reduction

- Let E and F be two equivalence relations on Polish spaces X and Y, respectively.
- We say E is Borel reducible to F if there exists a Borel function f : X → Y such that

$$x_1 E x_2 \Leftrightarrow f(x_1) F f(x_2).$$

Denoted by  $E \leq_B F$ .

We will regrad F as a more complicated equivalence relation.

#### Benchmarks



Figure: The Zoo

The Main purpose of this area is to place equivalence relations arising in dynamical systems into this picture.

# Equivalence relations which are not classifible by countable structures

► Let S<sub>∞</sub> be the permutation group of natural numbers. This group and its subgroup have serious connections with countable model theory.

#### Definition

An Equivalence relation E is classifible by countable structures if there exists a Borel  $S_{\infty}$  action  $E_X^{S_{\infty}}$  such that  $E \leq_B E_X^{S_{\infty}}$ .

The following four equivalence relations are maximal  $S_\infty$  actions, in other words, all  $S_\infty$  actions are Borel reducible to it.

- Isomorphism of countable graphs.
- (Carmelo, Gao) Homeomorphism relation of zero-dimensional compact metric spaces.
- (Carmelo, Gao) Conjugacy relation of Cantor systems.
- (Paolini, Shelah) Isomorphism of Torsion-free abelian groups.

(Hjorth) Let G be a Polish group acting on a Polish space X Borelly, suppose we have

- 1. Every orbit is meager.
- 2. Every orbit is dense.
- 3. Every local orbit is somewhere dense.

Then,  $E_X^G$  is not reducible to any Borel  $S_\infty$  action. We call such an action a **turbulent action**.

#### Some known results in dynamical systems

- (Hjorth) Isomorphism of ergodic measure preserving transformations is not classifibile by countable structures.
- (Foreman, Weiss) The conjugation action of measure preserving transformations of [0,1] on the space of ergodic measure preserving transformations of [0,1] is turbulent.
- ▶ (Foreman, Rudolph, Weiss) The conjugacy relation of ergodic measure preserving transformations of [0, 1] is not Borel.
- (Foreman, Gorodetski) Topological conjugacy relation of diffeomorphism of a smooth manifold with dimension at least five is not Borel.

Exact complexity of the two equivalence relations above are open.

## New graph



#### Minimal system

A compact system is a compact metric space together with an automorphism f, (X, f).

A compact minimal system is a compact system (X, f) such that all orbits  $\{f^n(x)\}_{n \in \mathbb{Z}}$  are dense.

Let (X, f) be a compact system. A point  $x \in X$  is syndetically recurrent if for every nbhd U of x there exists N, the set of return times  $r(x, U) = \{n \in \mathbb{N} | f^n(x) \in U\}$  intersects with all N-blocks of consecutive natural numbers. Two equivalent definitions:

- ► All points in a minimal system is syndetically recurrent.
- Orbit closure of a syndetically recurrent point is minimal.

The space of compact minimal systems is a standard Borel space.

All compact metric space can be regarded as a closed subspace of the Hilbert cube. We can isomorphically embed (X,f) as a subshift of  $(\mathbb{H}^{\mathbb{Z}},S)$  by sending  $x\in X$  to the point

 $(..., f^{-1}(x), x, f(x), ...).$ 

We can view all compact minimal systems as a minimal subshift of  $(\mathbb{H}^{\mathbb{Z}},S).$ 

#### Question

#### Definition

Two dynamical systems (X, f) and (Y, g) are **isomorphic** or **conjugate** if there exists a homeomorphism  $h: X \to Y$  such that  $h \circ f = g \circ h$ , if h is just a continuous surjection we call h a **factor map**. Two systems are **flip conjugate** if (X, f) or  $(X, f^{-1})$  are conjugate with (Y, g).

- What is the complexity of the conjugacy relation of minimal systems?
- Classifying all compact metric spaces admitting a minimal automorphism is a largely open problem.

**Pointed minimal system** is a minimal system together with a point, (X, f, x). Two pointed minimal systems (X, f, x) and (Y, g, y) are isomorphic or conjugate if there is a isomorphism h between (X, f) and (Y, g) sending x to y.

#### Results

- (DGKKK) The conjugacy and flip conjugacy relations of Cantor minimal systems are not Borel.
- (Keya) Isomorphism of pointed Cantor minimal systems is Borel bireducible with =<sup>+</sup><sub>ℝ</sub>.
- ▶ (Kaya) Isomorphism of pointed minimal systems is Borel.
- (P., Li) The conjugacy and flip conjugacy relations of minimal systems are not classifible by countable structures.
- (P., Li) The conjugacy of pointed minimal systems is not classifible by countable structures.

#### Toeplitz subshifts

- Let Σ be a compact metric space, we will look at subsystems of (Σ<sup>ℤ</sup>, S).
- A sequence x ∈ Σ<sup>Z</sup> is called a Toeplitz sequence if x(n) is periodic for all n. Toeplitz subshift is the orbit closure of a Toelitz sequence.
- Let  $\eta$  be a Toeplitz sequence, every  $x \in \overline{O}(\eta)$ , the *p*-skeleton of x is

$$\operatorname{Per}_p(x) = \{ n \in \mathbb{Z} | x(n+kp) = x(n) \forall k \in \mathbb{Z} \}.$$

A period p of x is essential if  $\operatorname{Per}_p(x) \neq \operatorname{Per}_q(x)$  for all q < p.

#### Factors of Toeplitz systems

- ► A system (X,T) is equicontinuous if (T<sup>n</sup>)<sub>n>0</sub> are equicontinuous.
- All minimal systems admits a maximal equicontinuous factor which is unique up to isomorphism.
- The maximal equicontinuous factor of a Toplitz subshift is an Odometer system.
- ▶ For  $\overline{O}(\eta)$ , we can find an essential periodic structure  $(p_t)$  of it, such that  $p_t | p_{t+1}$ , all  $p_t$  are essential periods and  $\cup_t \operatorname{Per}_{p_t}(\eta) = \mathbb{Z}$
- For all  $x \in \overline{O}(\eta)$ , x will have the same  $p_t$ -skeleton as  $S^{n_t}\eta$  for  $0 \le n_t < p_t$ . The map sending x to  $(n_t)$  is a factor map and  $((p_t), 1)$  is the maximal equicontinuous factor of  $\overline{O}(\eta)$ .

#### Oxtoby subshift

- Let X be a compact metric space, (σ<sub>i</sub>) be a sequence in X. Let (p<sub>t</sub>) be a sequence of natural numbers such that

  3 ≤ p<sub>1</sub>.
  3p<sub>t</sub> ≤ p<sub>t+1</sub>.
  p<sub>t</sub> | p<sub>t+1</sub>.
- We define the Oxtoby sequence  $\eta$  by induction. First, we fill all  $\eta(kp_1 - 1)$  and  $\eta(kp_1)$  with  $\sigma_1$ . In the  $(n + 1)^{th}$  step, we fill all empty positions in  $[-p_n, p_n)$  by  $\sigma_{n+1}$  with period  $p_{n+1}$ .
- η is a well-defined Toeplitz sequence which was called an
   Oxtoby sequence.

Topological type of sequences

► Let X be a compact metric space, define an equivalence relation E<sub>tt</sub>(X) on X<sup>ω</sup>:

 $(x_n)E_{tt}(y_n) \Leftrightarrow \forall (n_k) \ x_{n_k} \text{ converges iff } (y_{n_k}) \text{ converges.}$ 

And say two sequences have the same topological type.  $\blacktriangleright~(X,f,x)$  and (Y,g,y) are isomorphic iff

 $(x, x, f(x), x, f^{2}(x), ...) E_{tt}(\mathbb{H}^{\mathbb{Z}}) (y, y, g(y), y, g^{2}(y)...)$ 

## Outline of the proof

When  $(\sigma_i)$  and  $(\sigma'_i)$  are not convergent.

#### Lemma

Suppose two Oxtoby subshifts  $(\overline{O}(\eta), (p_i), (\sigma_i))$  and  $(\overline{O}(\eta'), (p_i), (\sigma_i)')$  are conjugate by f, then  $f(\eta) = S^n(\eta')$  for some n.

- Two Oxtoby subshifts with the same periodic sturcture are conjugate iff there is an isomorphism sending η to η'.
- $\blacktriangleright (S^n \eta) E_{tt}(\mathbb{H}^{\mathbb{Z}}) (S^n \eta')$
- For Oxtoby sequences, this is equivalent to  $(\sigma_i)E_{tt}(\mathbb{H})(\sigma'_i)$ .
- When both  $(\sigma_i)$  and  $(\sigma'_i)$  converge, Oxtoby subshift is conjugate with Odometer  $(p_t)$ .

#### Continue

- Let E<sub>c</sub>, E<sub>f</sub>, be the conjugacy and flip conjugacy relations of minimal systems. Let E<sub>p</sub> be the conjugacy relation of pointed minimal systems.
- Starting with a sequence (σ<sub>i</sub>) in H. Choose a peridic structure of Oxtoby sequence p<sub>t</sub>.
- Sending  $(\sigma_i)$  to  $(\overline{O}(\eta), (p_i), (\sigma_i))$ .
- ▶ By the previous Lemma,  $E_{tt}(\mathbb{H})$  is Borel reducible to  $E_c$  and  $E_p$ .
- ► (Fact) Oxtoby subshift is conjugate to its inverse.
- $\blacktriangleright E_{tt}(\mathbb{H}) \leq_B E_f.$
- $\blacktriangleright E_{tt}(\mathbb{H}) \sim_B E_p.$

# Last thing

- Let  $c_0(S^1)$  be the space of sequences in  $S^1$  converging to 0.
- Consider the orbit equivalence relation  $E_{(S^1)\omega}^{c_0(S^1)}$ .
- ▶ By Hjorth's turbulent theorem,  $E_{(S^1)^{\omega}}^{c_0(S^1)}$  is turbulent.
- Start with a sequence  $(s_n)$  in  $S^1$ , fix a countable dense subset  $(q_n)$  of  $S^1$ .
- Sending  $(s_n)$  to

$$(s_0, q_0, s_1, q_1, s_2, q_2....)$$

is a Borel reduction from  $E_{(S^1)\omega}^{c_0(S^1)}$  to  $E_{tt}(S^1)$ .

- $E_{tt}(S^1) \leq_B E_{tt}(\mathbb{H})$  for obvious reasons.
- We are done!
- (P.,Li) Isomorphism relation of minimal systems is below a group action.

## Updated picture



21/24

#### Sabok conjecture

- (Sabok) The affine homeomorphism relation of Choquet simplices is a complete orbit equivalence relation.
- (Zelinski) The affine homeomorphism relation of Bauer simplices is a complete orbit equivalence relation.
- (Williams) The invariant measure of oxtoby subshifts is affinely homeomorphic to  $P(L(\sigma_i))$ , where

$$L(\sigma_i) = \{\sigma | \lim_k \sigma_{n_k} = \sigma\}.$$

- (Downarowicz) All choquet simplces can be realized as invariant measures of a Toeplitz symbolic subshift.
- (Sabok conjuecture) Isomorphism relation of compact minimal systems is a complete orbit equivalence relation.

#### What we hope



#### Thanks!